ІСТОРІЯ ВІДКРИТТІВ

Люди намагалися зрозуміти навколишній світ з найдавніших часів: чому тіла падають на землю, чому різні речовини мають різні властивості тощо. Цікавили людей також питання про будову світу, про природу Сонця і Місяця.

Властивість людства сумніватися й переглядати положення, які раніше вважалися єдино істинними, в пошуках відповідей на нові запитання зрештою привела до доби великих наукових відкриттів, яку сьогодні називають науковою революцією, що розпочалася приблизно з другої половини 16-го століття.

МЕХАНІКА

Галілео Галілей

Впродовж століття відтоді людство збагатилося працями таких дослідників, як Галілео Галілей, Хрістіан Гюйгенс, Йоган Кеплер і Блез Паскаль. Галілей першим почав послідовно застосовувати науковий метод, проводячи експерименти, щоб підтвердити свої припущення і теорії. Він сформулював деякі закони динаміки і кінематики, зокрема закон інерції, і перевірив їх дослідним шляхом.

Ісаак Ньютон

В 1687 році Ньютон опублікував книгу «Principia», в якій в подробицях описав дві основоположні фізичні теорії: закони руху тіл, відомі під назвою закони Ньютона, і закони тяжіння. Обидві теорії чудово узгоджувалися з експериментом. Книга також наводила теорії руху рідин. Згодом класична механіка була переформульована і розширена Леонардом Ейлером, Жозефом-Луї Лагранжем, Вільямом Гамільтоном та іншими.

ЕЛЕКТРИКА І МАГНЕТИЗМ

Після встановлення законів механіки Ньютоном, наступним дослідним полем стала електрика. Основи створення теорії електрики заклали спостереження й досліди таких вчених 17-го століття, як Роберт Бойль, Стівен Ґрей, Бенджамін Франклін. Склалися основні поняття – електричний заряд та електричний струм.

Андре-Марі Ампер

1785 року Шарль Кулон опублікував закон взаємодії заряджених тіл, відомий як закон Кулона. 1820 року Андре-Марі Ампер встановив закон взаємодії провідників зі струмом – закон Ампера.

Майкл Фарадей

Ганс Крістіан Ерстед уперше помітив дію електричного струму на магнітну стрілку. 1831 року англійський фізик Майкл Фарадей об'єднав електрику й магнетизм, продемонструвавши, що рухомий магніт індукує в електричному колі струм. Спираючись на цю концепцію, Джеймс Клерк Максвелл побудував теорію електромагнітного поля. Крім електромагнітних явищ рівняння Максвела описують світло. Підтвердження цьому знайшов Генріх Герц, відкривши радіохвилі.

ОПТИКА

Томас Юнг

Із побудовою теорії електромагнітного поля та електромагнітних хвиль перемогою хвильової теорії світла, започаткованої Гюйгенсом, над корпускулярною теорією Ньютона, завершилася побудова класичної оптики. На цьому шляху оптика збагатилася розумінням дифракції та інтерференції світла, досягнутим завдяки працям Френеля і Юнга.

Важливими віхами в становленні оптики були відкриття закону заломлення світла, принципу Ферма та принципу Гюйгенса. Винаходи таких оптичних приладів як телескоп та мікроскоп сприяли розвитку не тільки фізики, а й суміжних областей науки.

У 19 столітті зародилася спектроскопія — вивчення властивостей речовин оптичними методами. Спектральний аналіз допоміг ідентифікації нових хімічних елементів, таких як Гелій.

ТЕРМОДИНАМІКА І СТАТИСТИЧНА МЕХАНІКА

Джеймс Прескотт Джоуль

У 18-му і на початку 19-го століття були відкриті основні закони поведінки газів, а з добою теплових машин сформувалася наука термодинаміка. У середині 19-го століття Джоуль встановив еквівалентність механічної та теплової енергій, що призвело до формулювання закону збереження енергії. Завдяки Клаузіусу був сформульований другий закон термодинаміки Гібс заклав основи статистичної фізики, Людвіг Больцман запропонував статистичну інтерпретацію поняття ентропії.

ТЕОРІЯ ВІДНОСНОСТІ

Альберт Ейнштейн

У 1905 році Альберт Ейнштейн побудував спеціальну теорію відносності, яка продемонструвала, що поняття ефіру зайве при поясненні електромагнітних явищ. При цьому довелося змінити класичну механіку Ньютона, давши їй нове формулювання, справедливе при великих швидкостях. Докорінно змінилися також уявлення про природу простору й часу. Ейнштейн розвинув свою теорію у загальну теорію відносності, опубліковану в 1916 році. Нова теорія включала в себе опис гравітаційних явищ і відкрила шлях до становлення космології — науки про еволюцію Всесвіту.

КВАНТОВА МЕХАНІКА

Макс Планк

Розглядаючи задачу про теплове випромінювання абсолютно чорного тіла Макс Планк у 1900 році запропонував неймовірну ідею, що електромагнітні хвилі випромінюються порціями, енергія яких пропорційна частоті. Ці порції отримали назву квантів, а сама ідея розпочала побудову нової фізичної теорії — квантової механіки, яка ще більше змінила класичну Ньютонівську механіку, цього разу при дуже малих розмірах фізичної системи. В тому ж 1905-му році Альберт Ейнштейн застосував ідею Планка для успішного пояснення експериментів із фотоефекту, припустивши, що електромагнітні хвилі не тільки випромінюються, а й поглинаються квантами. Корпускулярна теорія світла, яка, здавалося, зазнала нищівної поразки в боротьбі з хвильовою теорією, знову отримала підтримку.

Ернест Резерфорд

Суперечка між корпускулярною і хвильовою теорією знайшла своє вирішення в корпускулярно-хвильовому дуалізмі, гіпотезі, сформульованій Луї де Бройлем. За цією гіпотезою не тільки квант світла, а будь-яка інша частинка проявляє водночас властивості, притаманні як корпускулі, так і хвилі. Гіпотеза Луї де Бройля підтвердилася в експериментах з дифракції електронів.

Нільс Бор

У 1911 році Ернест Резерфорд запропонував планетарну теорію атома, а в 1913 році Нільс Бор побудував модель атома, в якій постулював квантовий характер руху електронів. Завдяки роботам Вернера Гайзенберга, Ервіна Шредінгера, Вольфганга Паулі, Поля Дірака та багатьох інших квантова механіка знайшла своє точне математичне формулювання, підтверджуючись численними експериментами. В 1927 році була вироблена копенгагенська інтерпретація, яка відкривала шлях для розуміння законів квантового руху на якісному рівні.

Учасники Сольвеївського конгресу 1927 року, на якому обговорювалися проблеми інтерпретації квантової механіки

ФІЗИКА СУЧАСНОСТІ

Марія Склодовська-Кюрі

Із відкриттям радіоактивності Анрі Беккерелем, П'єром Кюрі та Марією Склодовською-Кюрі почався розвиток ядерної фізики, яка привела до появи нових джерел енергії: атомної енергії та енергії ядерного синтезу. Відкриті при дослідженнях ядерних реакції нові частинки: нейтрон, протон, нейтрино започаткували фізику елементарних частинок. Ці нові відкриття на субатомному рівні виявилися дуже важливими для фізики на рівні Всесвіту і дозволили сформулювати теорію його еволюції — теорію Великого Вибуху.

Енріко Фермі

Склався остаточний розподіл праці між фізиками-теоретиками й фізиками-експериментаторами, Енріко Фермі був, мабуть, останнім визначним фізиком, успішним як у теорії так і експериментальній роботі.

Передній край фізики перемістився в область дослідження найфундаментальніших законів, ставлячи перед собою мету створити теорію, яка пояснювала б Всесвіт, об'єднавши теорії фундаментальних взаємодій. На цьому шляху фізика здобула часткові успіхи у вигляді квантової електродинаміки, теорії електрослабкої взаємодії та теорії кварків — квантовій хромодинаміці. Усі ці теорії неформально об'єднує так звана стандартна модель. 2012 року експерименти, проведені на Великому адронному колайдері в ЦЕРНі, підтвердили існування останньої до того ще невідкритої частинки стандартної моделі бозона Хіггса. Однак, квантова теорія гравітації досі не побудована. Певні надії пов'язуються з теорією струн.

Водночас, починаючи зі створення квантової механіки швидкими темпами розвивається фізика твердого тіла, відкриття якої привели до виникнення та розвитку електроніки, а з нею й інформатики, які внесли докорінні зміни в культуру людського суспільства.

Фізичні інструменти й фізичні теорії поширилися в інші області науки: хімію, біологію, медицину, в сторону яких, загалом, змістився інтерес суспільства.