Розділи основи термодинаміки: 11.1. ВНУТРІШНЯ ЕНЕРГІЯ І СПОСОБИ ЇЇ ЗМІНИ 11.2. ПЕРШИЙ ЗАКОН ТЕРМОДИНАМІКИ. АДІАБАТНИЙ ПРОЦЕС 11.3. ПРИНЦИП ДІЇ ТЕПЛОВИХ ДВИГУНІВ. ХОЛОДИЛЬНА МАШИНА

11.3. ПРИНЦИП ДІЇ ТЕПЛОВИХ ДВИГУНІВ. ХОЛОДИЛЬНА МАШИНА

Процеси, які можуть самочинно відбуватися тільки в одному напрямку, називають необоротними процесами.

Необоротність процесів у природі відображає другий закон (начало) термодинаміки, який має кілька еквівалентних формулювань. Наприклад, у формулюванні німецького фізика та математика Рудольфа Клаузіуса він звучить так:

Неможливим є процес, єдиний результат якого – передача енергії у формі теплоти від менш нагрітого тіла до більш нагрітого.

Процеси, які не суперечать ані першому, ані другому законам термодинаміки, відбуваються в теплових машинах.

Тепловий двигун – теплова машина циклічної дії, яка енергію, що виділяється під час згоряння палива, перетворює на механічну роботу.

Механічну роботу у двигуні виконує газ, який, розширюючись, тисне на поршень. Газ, який виконує механічну роботу в процесі свого розширення, називають робочим тілом.

Щоб газ міг штовхати поршень, необхідно, щоб тиск під поршнем був більшим за зовнішній тиск. Таке підвищення тиску досягається за рахунок збільшення температури робочого тіла. Пристрій, у контакті з яким робоче тіло одержує певну кількість теплоти, називають нагрівником.

Робоче тіло не може нескінченно розширюватися. Для безперервної роботи двигуна необхідно, щоб поршень повертався у початкове положення. Газ при цьому буде стискатися, виконуючи від’ємну роботу. Щоб у цілому за цикл робота газу була додатною, тиск, а отже, і температура газу під час стиснення мають бути меншими, ніж тиск і температура під час розширення, тобто газ потрібно охолоджувати. Об’єкт, у контакті з яким від робочого тіла береться деяка кількість теплоти, називають холодильником.

Будь-який тепловий двигун складається з трьох основних частин: нагрівника, робочого тіла, холодильника.

Коефіцієнт корисної дії η двигуна – фізична величина, яка характеризує економічність теплового двигуна і дорівнює відношенню роботи, виконуваної двигуном за цикл, до кількості теплоти, одержуваної від нагрівника:

Сучасну цивілізацію неможливо уявити без теплових двигунів. Найбільш широко їх використовують у теплових та атомних електростанціях, де потужні парові турбіни (двигуни зовнішнього згоряння) обертають ротори генераторів електричного струму. Теплові двигуні використовують і в більшості сучасних видів транспорту. На потужних літаках і ракетах встановлюють турбореактивні та реактивні двигуни, на легких літаках – поршневі.

Водні судна можуть бути оснащені як дизельними двигунами (двигунами внутрішнього згоряння), так і турбінами. Карбюраторні та дизельні двигуни приводять у рух більшість сучасних автомобілів.

Холодильний пристрій – це пристрій циклічної дії, який підтримує в холодильній камері температуру нижчу, ніж температура довкілля.

Робочим тілом у холодильному пристрої є холодоагент – пара рідини, яка легко випаровується. Унаслідок стиснення холодоагент конденсується, при цьому виділяється велика кількість теплоти Ql, яка через теплообмінник передається довкіллю. Стиснення газу здійснюється компресором, який виконує механічну роботу А' за рахунок електроенергії.

У випарнику тиск над поверхнею рідини зменшується, холодоагент випаровується, при цьому поглинається кількість теплоти Q2. Оскільки стиснення робочого тіла відбувається за більшого тиску, ніж його розширення, то робота газу за цикл є від’ємною і дорівнює: A = Q2 – Q1. Зовнішні сили за цикл виконують додатну роботу: A' = Q1 - Q2.

Фізична величина, яка характеризує ефективність роботи холодильного пристрою і дорівнює відношенню кількості теплоти, забраної за цикл від холодильної камери, до роботи зовнішніх сил, називається холодильним коефіцієнтом пристрою: